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Energy-momentum tensor in phase space: a connection 
between SchrBdinger energy-momentum tensor and 
Terletsky distribution function 

E N Evtimova 
Department of Physics, Institute for Foreign Students, 1111 Sofia, Bulgaria 

Received 23 June 1992 

Abstract. Schradinger energy-momentum tensor for a matter field interacting with an 
external electromagnetic field is represented in phase space by means of Terletsky 
distribution function. The explicit form of this distribution function in the case of a 
hydrogen-type atom is found. The structure of the Schmdinger energy-momentum tensor 
in phase space is compared with the structure of a real fluid and its local pressure and local 
energy are presented in the fundamental state of a hydrogen-type atom, The negative 
values of the Terletsky distribution function are not rejected in view of their participation 
in the phase space energy-momentum tensor. The negative part of the quantum distribu- 
tion function could he interpreted as phase space density for anti-constituents in a 
hypothetical sub-quantum level of the matter. 

1. Introduction 

Quantum distribution functions have been investigated since 1932 when Wigner [ l ]  
discovered his well-known distribution function for the purposes of quantum optics. 
Many other quantum distribution functions were found later, each one of them 
suggested to describe a particular branch of quantum physics. In 1966 Cohen [2] 
classified almost all the quantum distribution functions. The development of the basic 
ideas, the classifications and the main tendencies of investigations in the scope of the 
quantum distribution functions have been traced out by many authors [3-111. 

It is a well-known fact that some of the quantum distribution functions have 
negative values in some domains in phase space. This fact has always complicated 
their interpretation as probability densities in phase space. Here we intend to show 
that the negative values are no great disadvantage as regards the possibility of 
including some of the quantum distribution functions in a phase space representations 
of the energy-momentum tensor of the system. 

According to [12] and [13] we can decompose any quantum distribution function in 
the following way: 

F ( x ,  k )  =F+(x ,  k ) - F - ( x ,  k) 
where the fundions 

F*(x,k)=(1/2)(1F(x, k ) l f F ( x , k ) )  
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are always positive and could be considered as probability densities for pairs of 
random physical quantities (q", q-). This suggestion for F*(x, k) could be related to 
Kruger's [14] idea to consider joint distribution functions in the sense of classical 
probability theory of a stochastic variable. It is important to note that the functions 
F"(x, k) in (1.2) are continuous and integrable if F ( x ,  k) is smooth and integrable. 

In the above and in what follows x = (w") denotes the position in Minkowski space 
and k= (k,) is the four-dimensional wavevector related to the four-momentump,, by 
kp =p,lhc, p = 0, 1,2,3,  where h is the reduced Planck's constant and cis the speed of 
light. For interpretation purposes in the sequel we accept Recami and Rodrigues [U] 
concept that special relativity is based on the whole proper group of both ortho- and 
anti-orthochronous Lorentz transformations, i.e. that in special relativity, particles as 
well as antiparticles are included. 

Here we should mention that Vigier and Terletsky [16] have already discussed the 
possibility of representing the probability density of a system as a difference of two 
positive probability densities, corresponding to the particles and antiparticles forming 
the system. The representation (1.1) appears as a generalization of their concept to 
the case of phase space distribution functions. 

The question about negative quasi-probabilities was also considered by Werner 
[9]. He evaluated the minimal value of the negative probability in the case of Wigner 
quantization of arrival time of a particle at the origin and the phase of a harmonic 
oscillator. 
As far as we know the first successful attempt to relate the Wigner distribution 

function to current density, energy-momentum density and spin-density of a system 
was by Boer and van Weert [17]. De Groot et al. 1181 showed that it was possible to 
represent the energy-momentum tensor of a system of scalar non-interacting particles 
as the second moment of the Wigner distribution function &(x,  k): 

r 

T,,,(x) =constant k,k,Fdx, k) d'k. J 
Here and in what follows all integrations are carried out from - m to t m , unless 
stated otherwise. 

One observes that it is necessary to use an integration over a four-dimensional 
&function in order to introduce the Wigner distribution function in the energy- 
momentum tensor in equation (1.3) (see Chapter 111 in [18] for details). 

Also, a phase space decomposition of the energy-momentum tensor of interacting 
scalar particles by means of Wigner distribution function has been applied by Cooper 
and Sharp 1191 to account for pion production from a scalar source. 

However, there exists another possibility that is more natural both from the 
mathematical and physical point of view-this is by means of Fourier expansion to 
obtain suitable representations of the current density, the energy-momentum tensor 
and the spin density in the phase space. In this case the quantum distribution function 
is the function first introduced by Terletsky 1201 and later rediscovered by Margenau 
and Hill [Zl]. 

There are certain differences between the Wigner distribution function and the 
Terletsky distribution function. For example, the Wigner distribution function is 
obtained by means of a Fourier transform of the off-diagonal elements of the density 
operator [22] and maybe that is why it is suitable for description of the mixed states of 
many-particle systems. Since the Terletsky distribution function is found through 
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Fourier expansion of one of the two wavefunctions in quantum mechanical probability 
we suppose that it is more convenient for description of pure states of a single system. 

So, the aims of the work are: (1) to find a phase space representation of the 
Schrodinger energy-momentum tensor [23] of a scalar matter field interacting with an 
external electromagnetic field and (2) to give an explicit expression of the Terletsky 
distribution function in the case of hydrogen-type atoms. 

The organization of the work is as follows: in section 2 we transform the 
Schrodinger energy-momentum tensor in a way suitable to obtain its phase space 
representation. Then we find its relation to the Terletsky distribution function. In 
section 3 using Fourier analysis on Euclidean spaces [24] we obtain the Terletsky 
distribution function for hydrogen-type atoms in spherical coordinates, both in 
position and momentum spaces. In section 4 we make some comments concerning the 
results obtained in the previous sections. In Section 5 the local pressures, energies and 
longitudinal and transverse interactions in the fundamental state of hydrogen atoms 
are considered. 

2. Relation between Schr6dinger energy -momentum tensor Por matter fields and 
the Terletsky distribution function 

Consider the energy-momentum tensor for a scalar field Y interaking with an 
external electromagnetic field A,,, p=O, 1,2 ,  3, introduced by Schrodinger [23] 

where a is a normalizing constant, D,=a,,-id,, p = O ,  1, 2, 3, ap=a/axp, e is the 
elementary electric charge, A, is the four-potential of the external electromagnetic 
field, g,, is the metric in Minkowski space and 3 is the Lagrangian of the system [23]: 

Here Einstein's summation rule is understood and the wavenumber k is determined 
via the rest mass ma of the scalar field by the well-known relation 

S&) = a Re[(DpW*VJvV1 - %,,, (2.1) 

3=(a/2)[(DoY)*(DO\Y) - k%*Y]. (2.2) 

hckl(2z) = moc2. (2.3) 

[D,D'+ kz]Y =O.  (2.4) 

According to Schrodinger the field Y obeys the Klein-Gordon equation with 
external electromagnetic field 

In his thesis Anastassov [25] pointed out the possibility of transforming the 
Schrodinger energy-momentum tensor into phase space by the use of the Terletsky 
distribution function. Here a modified version of his proof and interpretation of the 
results is presented. 

The first statement is that the energy-momentum tensor defined in (2.1) can be 
transformed into a form suitable for its transition into phase space, i.e. 

where U = a,a". 
s&)= -a  Re[Y*(D,D,Y)] + (a/2)[a,a,-(1/2)g,,P](Y*Y). (2.5) 

This is easily checked using the facts that 

Le= (a/2)O(Y"Y) (2.6) 

Re[(D,,Y)*(DvY)] = - Re[Y*(D,,DvY)] + (1/2)a,&(YmY). (2.7) 
provided that the field equation (2.4) holds, and that 



5512 E N  Eutimova 

The last equation becomes obvious if the complex function Y is represented in the 
form 

yIr B eiq (2.8) 

where B is the amplitude and 9 is the phase of Y, B and q being real function 
The second step is the application of the inverse Fourier transform 

Y(x)=(2n)-' @(k)eikd4k (2.9) I 
where @(k) is the Fourier transform of Y(x) and kx= k#', that leads to 

-Re[Y*(D,,DvY)] =2(2~)-~ Re[Y*(x)@(k) e*K,K, d4k. (2.10) 

Here E,,= k,,-eA,, p=O,  1, 2, 3. NO mass-shell restriction on the four-vector k,, is 
implied in (2.9) (see [26]). 

Consequently, the SchrMinger energy-momentum tensor can be represented as 
follows: 

I 

S,,(x) = 2a FT(x,  k)qn,  d4k (2.11) s 
where 

Fdx, k )  = (Za)-* Re[Y*(x)@(k) e"] (2.12) 

is the eight-dimensional Terletsky distribution function and 

%,,"E K,K,+ (k,& -g,k,k'i2)/2 (2.13) 

is a tensor depending on the wavevectors k, and the external field A#, 

energy-momentum tensor 
In this way we obtain the following phase space representation of the Schrodinger 

Sr& k)=&(x, kP,,,(x, k ) .  (2.14) 

In order to apply the re-interpretation principle in special relativity [15] we also 
need the phase space representation of the charge current of the scalar field [IS] 

Y#(x) =i{Y*a,Y -Yt$Y*) p =0,1,2,3. (2.15) 

Inserting (2.9) under the derivatives in (2.15) and omitting the integration over k 
we obtain immediately 

T&(x, k )  = - Zk,FT(x, k ) .  (2.16) 
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3. Terletsky distribution function for hydrogeu-type solutions of the Klein-Gordon 
equation , 

Here we shall find the explicit expression of the function FT(x, k )  defined in (2.12) for 
the case of hydrogen-type solutions of equation (2.4): 

where 
~ ( r ,  6, q , x o )  =f(r)PL&, 6, p1) e+@ ( 3 4  

f ( r )  = Npw2 e-@'"(Br)'"$(-n + [+ 1,2[+ 2; Br) (3.2) 

%-&, 6, = (Br) f -mYd6,  P). (3.3) 

and 

(see [27] for details). 
In the above formulae the following notation has been used: (r, 6 , q )  are the 

spherical coordinates in R'; 9,-,,,(. , . , .) is the space spherical harmonic of degree 
i-m, $(. , . , .) is the degenerate hypergeometrical polynomial [28], B=h/(4dqe) ,  
N is a normalization constant, ma is the rest mass of the electron, rz = 1,2 ,3 ,  . . . is the 
main quantum oumber, 1 is the orbital quantum number, m is the magnetic quantum 
number. 

We shall use the following representation of the degenerate hypergeometrical 
polynomial [27] 

where 
n - 1 - 1  (21+1)! 

Ct=(-l)"( s ) ( 2 1 + s + l ) !  

The Fourier transform of the function (3.1) contains a Dirac &function because of 
its stationarity. The partial Fourier transform in R3 can be found applying Theorem 
(3.10) from Stein and Weiss [21], i.e. we have that 

where (k?, ks, k,) are the spherical coordinates in momentum space R3, j =  I-m, and 
@ ( k )  = ~ ( k o - ~ ) H ~ / 2 + j ( k , ) P i - ~ ( k , ,  ke, kp) (3.5) 

H,,,,,(k,) = 2n im-' laf(r)( l~/2+j(rk~)ik!+j)r3'2t i  dr (3.6) 

is the Hankel transform of the function f(r) from (3.2). Here Jl,2tj(.) is a Bessel 
function of order 1/2+ j (see [ZS]). 

The explicit form of the function H3i2+,(k,) is obtained by the application of 
formula (16), Chapter 7 in [a] 

Here the following notation is used: 
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# ( p )  and D h  are two constants depending on the parameter j3, r(.) is the gamma 
function (see 1291, Chapter V). &(. , . , ; .) denotes the Gauss hypergeometrical 
function [28] 

wherea=2+1-(m-s)/2, b=(-m-s) l2 ,c=l-m+3/2inourcase.  
One can easily prove that the inverse Fourier transform of (3.5) restores the 

wavefunction (3.1) by means of theorem (3.10) from [21] and the following integral 
identity (see [28]) 

Hence, from the above discussion it follows that the six-dimensional Terltsky 
distribution function for a hydrogen-type atom is given by 

(3.10) 

where C is a normalizing constant. Here Y/,,,(. , .) is a spherical harmonic of order 
I-m. The Bessel function Jln+I-m(.)  can be represented as follows (see [29], Chapter 

(3.11) 

It is easy to see that this is an elementary function which converges to zero when 
z+ m . Also the functions f ( r )  and Haz+l(/c,) converge to zero when their arguments 
tend to infinity. Thus we conclude that F d x ,  k) is a bounded function at infinity. 

X U )  
J*/z+,&) = (2/x)1~2ZI-m+1~2(--Z- dldr)’-”[(sin z ) / z ] .  

Here we want to point out that the factor 

is responsible for the validity of the Parceval equality in the case of Fourier transforms 
in spherical coordinates both in position and momentum space. 

In the particular case of the fundamental state of a hydrogen-type atom the 
function (3.10) was obtained by Evtimova [30]. The numerical investigation of the 
distribution function (3.10) in this case shows that the negative values are 0.445% of 
all values of this function (see [13]). 

4. Discussion 

Using the energy-momentum tensor of a field one adopts ‘the relativistic framework 
in which fundamental particles are regarded as extended objects’ [31], i.e. as objects 
with internal structure. 

We next attempt to specify the possible internal’constituents of a scalar particle. 
As has been shown in section 2 the Schrodinger energy-momentum tensor can be 

transformed into a phase space density 

&(x, W=Fdx, k)[KpKv+ ( ~ F k v - g p v ~ o k “ ~ 2 ) ~ 2 1  (4.1) 
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where K, = k, - eA, and Fdx,  k) is given by equation (2.12). It is important to notice 
that the Terletsky distribution function appears in (4.1) in a completely natural way 
through the Fourier expansion. 

Now we claim that it is not difficult to interpret the negative values of the Terletsky 
distribution function in view of the fact that they participate in the following phase 
space tensor 

Re[Y*(x)@(k) e'"][3k,k,12-g,,k,k"l4+ eZA,,A,-ek,A.- eA,k,]. (4.2) 

Here we shall exploit the idea suggested by Bohm and Vigier [32] to consider the 
quantum objects as specific quantum fluids. The concept that the energy-momentum 
tensor of a scalar field was of the same type as that of an ideal fluid was specially 
underlined by Anastassov [25]. Landau [33] was the lirst to apply the idea of ideal 
fluid hydrodynamics to multiparticle production by fast particle collisions. His 
approach was generalized by Cooper and Sharp (191 to the case of the energy- 
momentum tensor of interacting scalar particles, expanded into the phase space 
through the Wigner distribution function. The non-interacting part of this phase space 
tensor takes the form of a tensor of an ideal fluid. 

The novelty in our approach is that the tensor (4.2) has the structure of a real fluid 
(see [34], chapter 2) with some peculiar properties to be discussed below. 

It is necessary here to further specify the terminology. When fluids corresponding 
to quantum objects are defined in position space [32], [33] or in momentum space [35] 
they are called quantum fluids. If the characteristics of the considered fluids are 
determined by a distribution function in phase space then they will be called sub- 
quantum fluids. 

It is clear that quantum fluids are obtained from sub-quantum ones by means of 
integration either over k or x .  

The main hypothesis here is that the phase space tensor (4.2) describes the 
constituents of a scalar quantum object. Let us see what kind of constituents could be 
found in (4.2). 

Since the decomposition (1.1) is valid for any quantum distribution function and 
since by delinition F+(x, k)*O, it is clear that the phase space tensor S,&, k) can be 
written as a difference of the foUowing two sub-quantum fluids 

S&(x, k) = F<(x,  k)[3kpk,!2-g,,vk,k"f4+eZA,A,-ek,A,- eA,k,] (4.3) 

where 

2F+(x, k) = (2~)-~{IRe[Y*(n)@(k) e'"][ kRe[Y*(x)@(k) e?} (4.4) 
Combining the idea suggested by Vigier and Terletsky'[16] with the considerations 

of PavSi2 and Recami [31] we shall juxtapose 'constitients' to S:"(x, k) and 'anti- 
constituents' to s;,(~, k). In other words, the representation (4.3) allows assumption 
of the existence of at least two streams of 'constituents' and 'anti-constituents' in a 
hypothetical sub-quantum level of the matter described in phase space. Here by sub- 
quantum we mean the level that precedes the quantum one, i.e. it is connected with 
the internal structure of any elementary quantum object. 
Since one has that 

s,(x,k)=s,:(x,k)-S;,(x,k) (4.5) 
one can say that each negative 'anti-constituent' -S;& k) = - F<(x, k) %&, k) 
annihilates (figuratively said 'eats up') the action of a corresponding 'constituent' 
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S&(x, k )  = F;(x, k)%&, k) ,  so that the remaining uncompensated 'constituents' 
determine the four-momentum of the quantum object 

,. 
P,= S,,(x, k ) d 3 x d 4 k .  1 (4.6) 

Next we shall consider the characteristics of the above introduced sub-quantum 
fluids, For example, the local pressures and the local energy densities of these fluids 
are equal to 

p * ( x ,  k )=  (1/4)F:(x, k)k,k" (4.7) 
p*(x,  k )  = (5/4)F:(x, k)k.,k" (4.8) 

provided that k,k"#O. Hence, the local four-velocities of the two sub-quantum fluids 
are given by 

y = k,/(lk.k"l)'n k,k"#O p = 0,1,3,4. (4.9) 
The terms responsible for the interactions are as follows 

A.$(x, k)  = F$ (x, k)(eZA,A, - e k d  - eA, kv), (4.10) 

From this representation it is clear that the electromagnetic potential A ,  acts directly 
on the wave four-vectors k,, @, Y =  0.1,2.3) in the Fourier expansion of the wavefunc- 
tion. Also a self-interaction of the electromagnetic field is included. 

Now we shall direct our attention to some of the peculiarities of the above energy- 
momentum tensors in phase space. 

First, it is obvious from equations (4.7) and (4.8) that their local pressures and 
local energy densities can be positive as well as negative since both cases koku>O and 
k,k"<O are possible. Also, sub-quantum fluids without local pressure and local 
energy are included: koko=O. 

Second, since these hypothetical sub-quantum fluids contain time-like 
(U#'= - l), space-like (U#"= -1) and isotropic (u.,u"=O) four-velocities, they 
consist of bradyons, tachyons and luxons (see Recami [38]). 

The question about the existence of tachyons (faster-than-light objects) has been 
discussed by many authors from different points of view [37-441. 

Now we shall apply the reinterpretation principle in special relativity (see [U] and 
[45]) to our case. For this purpose we shall consider the zeroth component of the 
current in phase space 

(4.11) 
Since $o(x, k )  depends on the charge of the scalar field it is obvious that the change 

of the energy sign (k,= Eihc): ko=-(-ko) means a change of the charge sign of the 
'constituents'hnti-constituents' of the sub-quantum fluids. Also, as Recami [45] 
pointed out, a change of the energy sign in momentum space when using Fourier 
expansions in the field theory corresponds to a change in the sign of time in the 
coordinate (dual) space and vice versa, i.e. h - ( - k 0 )  means nO-(-xO). Thus, 'one 
can reinterpret any negative energy object P (travelling backward in time) in terms of 
its anti-object P going the opposite way (endowed with positive energy and travelling 
forward in time)' [4S]). This leads to the conclusion that 'constituents'l'anti- 
constituents' of sub-quantum fluids consist of bradyons, tachyons and luxons as well as 
anti-bradyons, anti-tachyons and anti-luxons. 

%O(X,  k ) = - k o [ G ( x ,  k )  - 6 ( x ,  k)l .  
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5. Application 

Let us consider briefly the above-introduced local characteristics of the real sub- 
quantum fluid related to the fundamental state of the hydrogen-type atom. The 
Terletsky distribution function in this case depends only on the radial variables in 
R3 x R3 (see [26]) 

N e-8"2 sin(rk,) 
FT(x, k)  = 6(ko - ko) e-@ (4k: +@2)3'2(rkr) Q(kJ 

where the function Q(kJ is given by the expansion 

and N is a normalizing constant. 
The metric in Minkowski space is as follows 

g,,,=diag(l, -1, -P, -rZsin28). (5.3) 
Hence the square of the wavevector will be 

k,k'= k i -  k,Z-r2k:-r2sin28k$ (5.4) 
Thus, it is clear that the local pressures (4.7) and the local energy densities (4.8) 

depend on all the components of the wavevectors k,,, participating in the Fourier 
expansion (2.91. Therefore, from the relations (4.7), (4.S), (5.1) and (5.4) one 
concludes that the sub-quantum fluid (4.1) of the hydrogen-type atom shows disper- 
sion in the pressure and energy density even in the fundamental state. 

Sice the external electromagnetic potential is equal to the potential of the proton 
at the centre of the hydrogen atom: A,=(e /r ,  0, 0, 0) we see that the tensor 
responsible for the interaction has the following components 

(S.Sa) 

(5.5b) 

AS,$ = F:(xo, r ,  ko, k,)[(e2/rz) - (Zek~/r)] 

AS,,= -F;(x", r ,  ko, k,)[(ek,/r)J 
AS,',= - F$(x0,  r ,  ko, k,)[(ekelr)] 

AS&= -F$(xo,  r, ko, k,)[(ek&)] 

( 5 . 5 4  

(5.54 
which differ from zero. The remaining components of AS,, for p,  Y = r, 8, Q, are equal 
to zero. 

Here it is obvious that the longitudinal interaction plays role in AS; and the 
transverse interaction is important in AS& and AS&. 

6. Concluding remarks 

In this paper we have included the one-particle Terletsky distribution function of a 
scalar quantum object in the hydrogen-type atom in the phase space representation of 
the Schrodinger energy-momentum tensor. This fact reveals an opportunity for the 
interpretation of the negative values of the distribution functions. Any quantum 
object could be considered as composed of some kind of sub-quantum entities defined 
in phase space. These sub-quantum objects have the structure of fluids with positive 
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( F ; ( x , k ) > O )  as well as negative ( - F ; ( x , k ) S O )  densities in phase space. The 
species with positive density (S$(x, k)) are considered as ‘constituents’ and those with 
negative density (-S;”(x, k)) as ‘anti-constituents’ of the sub-quantum fluid SPv(x, k) 
(see 4.3) and (4.5)). The latter one precedes the quantum fluid S,,,,(x) (2.1) (for the 
terminology see [31]). Since no mass-shell restriction on the four-momentum k, is 
imposed new types of bradyon, tachyon and luxon streams in the ‘constituent’ and 
‘anti-constituent‘ fluids !& k) and S;,(x, k) appear. Also, as the re-interpretation 
principle in special relatmty [15], [45] has been proved valid in our case, the phase 
space representation of the energy-momentum tensor (4.2) contains anti-bradyon, 
anti-tachyon and anti-luxon fluids as well. The tachyoniclanti-tachyonic interpretation 
of the distribution functions is in agreement with Kruger’s suggestion [14]. The 
quantity of the negative values ( - F y ( x , k ) S O )  in the total distribution function 
FT(x, k) is very small: it amounts barely to 0.445% of aU the values of the distribution 
function in the fundamental state of the hydrogen-type atom. 

It is necessary to underline that simultaneously definite position and momentum of 
the quantum particle are not supposed to take place. 

Here we want to point out that all the above statements are open for discussion. 
The given interpretation is biased: it describes the quantum objects as composed of 
sub-quantum fluids, i.e. the above picture manifests only the continuous character of 
the quantum objects, but their discontinuity is not taken into account. 

Finally we want to mention that there always exists a possibility to model any fluid 
by, means of infinitely many chaotically moving fluxes of ‘particles’ and ‘anti;particles’ 
with suitable properties. What kind of properties are needed for these hypothetical 
sub-quantum objects will be discussed in a forthcoming paper. 
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